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Simulation of Coherent Nonadiabatic Dynamics Using Classical Trajectories
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In this paper, we describe a trajectory-based implementation of the semiclassical-limit Liouville equation
approach to molecular dynamics on multiple electronic surfaces. The formalism is briefly reviewed, and a
realization of the general theory in the context of a classical trajectory-based molecular dynamics algorithm

is described. The method is applied to a model problem consisting of one-dimensional motion on two coupled
electronic surfaces, and the results are compared with coupled-state wave packet calculations. Excellent
agreement is obtained, even for the detailed phase space structure of the nonclassical electronic coherences,
demonstrating that electronic coherent effects can be included naturally in generalized classical molecular
dynamics simulations.

I. Introduction dynamical approximations using classical mechanical trajectories
instead of quantum wave packets. This captures the full
classical many-body nonlinear dynamics of the system, but at
the expense of neglecting quantum effects. Despite the intrinsi-
cally quantum nature of molecular systems, classical trajectory
integration often works surprisingly well. An illustrative
example can be found in our recent work on photodissociation
recombination of 4 in rare gas solid3-2> Here, excellent

Chemical reactions occur by the rearrangement of atoms,
breaking and remaking bonds to form the final product species
from the initial reactant molecules. Whether in isolation in a
dilute gas or under the influence of the surrounding solvent in
a condensed phase, this chemical transformatiomligramical
process involving the mechanical motion of electrons and atomic

nuclei. These underlying elementary dynamical steps occur on . i
ying y &y P agreement between experiment and theory was achieved. A

the ultrafast time scales of molecular translations, vibrations,f I lated classical d inti fth bod .
rotations, and electronic transitions, most conveniently measured ully-correlaled classical description or the many-body caging
in femtoseconds. In this sense, all chemistrfgiatochemistry = and recombination was essential for m(_)dellng the key dyn_amlcal
Until recently, the details of elementary dynamical processes processes responS|bI¢ for_the reformation of madlecule W'th.

the large degree of vibrational coherence observed experimen-

in chemical systems could only be inferred indirectly from @y, 1 Gcul i | lated collisi bet th
measurements with time resolution many orders of magnitude ally. In particuiar, strongly correlated collisions between the
atoms of the nascent bnd a collective cage oscillation were

longer than the intrinsic dynamical time scales. The rapidl . . . .
g y oy found to play an essential role in the creation of a localized |

advancing field of femtochemistry now allows us to watch . .
phase space ensemble (the classical analogue of a localized wave

chemical reactions unfold in real tinte? ko) in a h . f th il building in th
The interpretation of the wealth of detail provided by ultrafast packet) In a harmonic part of the "‘?‘e”"‘f"* uilding in the
long-lasting vibrational coherenéé. This delicate phase match-

experiments poses fascinating but challenging opportunities for . . , o F
theory. The highly nonequilibrium initial ensembles and ing of highly nonlinear system and bath oscillations would not

subsequent nonlinear nonseparable dynamics induced by uI-be cqrrectly. modeled by, for |nstancg, a time-dependent S.elf'
trafast laser excitation lead to conditions that can violate the cOnSiStent field wave packet cal_culat|on, where a mean-field
limits of validity of the traditional equilibrium statistical separation of these subsystems is performed.
mechanical or linear response-based theories of condensed-phase For many problems of physical interest, however, the nuclear
reaction rates and dynamizs’ Direct computer simulation of ~ and electronic degrees of freedom cannot be uncoupled, and
many_body systems is an increasing|y powerfu] tool for model- electronic transitions unavoidably accompany the motion of the
ing condensed-phase ultrafast dynanficstill, a fully quantum nuclei. This introduces an intrinsically quantum mechanical
mechanical treatment of the electronic and nuclear degrees offeature into the dynamics. Numerous attempts have been made
freedom for a many-body system is an intractable numerical to develop methods that allow the intuitive and computational
problem and will probably remain so for the foreseeable future. advantages of classical mechanics to be combined with the
It is thus necessary to turn to S|mp||fy|ng approximations and pOSSlblllty of transitions between electronic states. Lar?@au,
conceptual models in order for progress to be made. Zener?’ and Stuckelber§ developed early theories of electronic

A variety of approximate methods for simulating many-body transitions induced by scattering events described by simple
chemical dynamics have been developed and applied to a rang&nownclassical trajectorie®. The classical motion of the nuclei
of physical problems. Some approaches strive to retain a fully Was assumed to be independent of the electronic dynamics in
quantum mechanical treatment of the atomic motion, at the these early studies, which is a good approximation in the limit
expense of making rather severe dynamical approximations. Anof high kinetic energy collisions. In general, though, the coupled
example of this philosophy is found in the array of methods €lectronie-nuclear dynamics must be solved simultaneously and
based on the time-dependent mean-field approximatigh. self-consistently, and several approaches to this problem have

Other methods treat the fully correlated atomic motion without been propose#:3! A significant amount of work has been
based on the “mean trajectory approximation”. Here, the
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a single classical trajectory describes the nuclear motion and clarified the connection between this approach and the surface-
evolves in a time-dependent potential given by the instantaneoushopping method in the limit of short electronic coherence
quantum expectation value of the full potential energy operator. time 3144

This trajectory, in turn, provides an explicit time dependence  |n most of these previous attempts at combining classical and
to the quantum Hamiltonian operator via its dependence on thequantum elements into one consistent dynamical theory, the
nuclear coordinates, and the coupled Schrodinger and Hamil-probabilistic description of the quantum subsystem in terms of
ton’s equations are solved simultaneously and self-consistently.its wave function or density matrix is coupled to a classical
This dynamical approach forms the basis of a number of description formulated in terms afidependent classical tra-
methods, including the time-dependent mean fieltland self- jectories either individually or as part of a final average over
consistent eikon& approximations and the classical electron an ensemble. A lone classical trajectory does not have a natural
model33-3° These methods share the mean trajectory equationsquantum analogue, and the coupled trajectory-wave function
of motion but differ in the details of their implementation. description used in these methods can lead to significant

The mean trajectory methods are quite useful for certain typesProblems and inconsistencies, as briefly described above.
of physical problems. However, they suffer from a fundamental ~ Recently, we proposed an alternative approach to classical
dynamical inconsistencd. In asymptotic regions where elec- dynamics on coupled electronic surfaces, based on a semiclas-
tronic transitions become negligible, the full dynamics should sical limit of the multistate quantum Liouville equation for the
partition into distinct trajectory ensembles on each populated electronic-nuclear dynamic8! The resulting formalism yields
electronic surface. The mean trajectory method instead leadsequations of motion for coupled phase space distribution
to a single ensemble, each member of which is evolving on its functions corresponding to both the electronic state-dependent
own weighted average of the quantum state-dependent asymphuclear probability distributions and the electronic coherence
totic potentials. In certain applications, this is acceptable, while between states. These equations of motion have the form of a
in others, unacceptable nonphysical effects result. The classicageneralized nonequilibrium statistical mechanics, and the elec-
electron model avoids this problem by binning the final tronic coupling manifests itself as extra terms in the classical
electronic actions, leading to a well-defined asymptotic elec- Liouville-like equations governing the distributions. These
tronic staté®-3° Phenomenological electronic damping is additional terms act as “sources” and “sinks” qf probablhty flow
introduced in some implementatidfia an effort to avoid these between states and also control the generation, evolution, and
undesirable effects. decay of electronic coherences. In marked contrast with other
An alternative approach to coupled-state molecular dynamics _appr_oaches t_hat 'T‘”Oduce cla_ssmal mechanics in terms of

individual trajectories or classical paths, our formalism is

that does not suffer from the above inconsistencies is the surface-, . .
hopping method, introduced by Tully and Pregfoand stil developed from the outset in terms of the coupling between

d iive devel faz-as | o hoDpi eul the distribution functions representing populations or coherences
under active developmetit.= ™ In a surtace-nopping caicula-  y,o yqelyves. The ability to treat electronic coherences naturally
tion, an ensemble of trajectories is propagated using standar

. . . . k ; o ithin a classical-like context is a unique advantage of this
classical trajectory integration but with an important modifica- approach
tion. At a given instant of time, each trajectory in the ensemble Ina re.vious ublicatioB we described in detail the general
evolves under the influence of a single electronic surface but formaliZm of O[l),lr cou Iea Liouville-like re resenta%ion of
may undergo a sudden transition, or “hop”, between the states, . pied P .
. X . classical molecular dynamics on coupled electronic states. In
based on a transfer probability and hopping algorithm. A o . . L O
disadvantage of the standard surface-hopping approach is tha?dd'tlon' we provided analytical results in simplifying limits
it treats thege’lectronicd namicsiasoherenx?pno?in pt?]e hase and made comparisons with conventional descriptions  of
lation bet th Iy tronic states. R 9 t'g | P ati nonadiabatic dynamics, such as Land@ener theon?$27-2%\We
relation between the electronic states. Recent implementations,,q, presented a direct numerical solution of the generalized
of the surface-hopping method couple a coherently evolving

lectroni function teachtraiectory i ble. Thi Liouville partial differential equations for a one-dimensional,
electronic wave tunction teachtrajectory In an ensemuie. 10IS . state model system. The results were compared with
trajectory is found at every instant on a definite electronic

. o ) coupled state wave packet calculations, and excellent agreement
surface but may “hop” at any time between these surfédt¥s. |25 ohserved, justifying a posteriori the approximations made
The absolute square of the instantaneous quantum-state ampliy, the derivation of the semiclassical equations of motion.
tudes are used as input for the stochastic hopping algorithm. yo\ever, the grid solution of the phase space partial differential
Quantum coherence is thus incorporated into the surface-hoppingaquations we presented requires even more numerical effort than
methodat some leel, but the fundamental justification for the  the exact quantum approach and, as it stands, does not constitute
manner in which it is treated is not well-established, and spurious g practical method for treating many-body coupled-state dynam-
effects, such a®o muchcoherence in some cases, can re$ult. jcs. An efficient trajectory-based implementation is desirable,
Despite this potential drawback, surface hopping has beenpreferably in the form of a relatively minor modification of the
employed successfully in a broad range of physical applications. standard classical molecular dynamics computer simulation. The

A formal theory of coupled electronitnuclear dynamics was  challenge of developing such a method is use classical
proposed by Pechukd%® based on a semiclassical analysis trajectories as a numerical tool to solve equations of motion

of the full Feynman path integrélexpression for the electroric that are, at a fundamental level, more general than Hamilton's
nuclear propagator. Unfortunately, the resulting elegant formal- equations for orbits in phase space.
ism is difficult to implement in practice, owing to nonlocal time In this paper, we present a trajectory implementation of our

effects: the forces on the classical subsystem in the semiclassicatoupled-surface semiclassical Liouville approach to nonadiabatic
limit depend on the complete time history of the quantum dynamics. Such an implementation is straightforward for
subsystem, which in turn depends on the complete history of dynamics on aingleelectronic surface: In that case, evolution
the classical motion. Progress has recently been made byof the phase space distribution function solving Liouville's
Webster et at®-50in implementing the Pechukas formalism in  equation is achieved simply by propagating an ensemble of
numerical simulations, while Coker and co-workers have trajectories sampled from the initial phase space density by the
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corresponding Hamilton’s equations. A generalization of this  The classical limit in the more general case of a Hamiltonian
Hamiltonian trajectory approach is required to incorporate the that is amatrix of operators representing vibrational dynamics
effect of the nonclassical coupling terms in the Liouville-like on multiple electronic states is not as straightforward. The
equations of motion. We present such a generalization below coupling between the highly quantum mechanical electronic
and compare the results of its application with numerically exact states introduces an intrinsically nonclassical component to the
quantum results for a simple but nontrivial one-dimensional two- evolution of the full densityp. Nonetheless, a consistent
state model problem. We treat the same model problem assemiclassical limit can be derivéd. Here, we briefly review
considered in our previous publicati8hyhich allows a direct the approach for the case of one-dimensional vibrational motion
comparison of the accuracy of the trajectory implementation on two coupled electronic states; the method can be easily
with the phase space grid solution of the underlying semiclas- generalized to trea& coupled surfaces amtvibrational degrees

sical Liouville-like equations. of freedom.
The organization of this paper is as follows: In section I, The Hamiltonian and density operators for the two-state
we briefly review the formalism of the coupled-state semiclas- problem are given in the electronic baid[] |20 by
sical Liouville approach. In section Ill, we describe the AN
realization of this formalism as a classical trajectory-based H= (':'ll ':'12) (6)
molecular dynamics algorithm. Section IV presents the results Hyy Hp
of applying the method to a model problem and gives a
comparison of the trajectory results with the analogous exact and
guantum quantities. Finally, a discussion is given in section Pry P
Va ~ :(All A].Z) (7)
P21 P22
Il. Theory respectively. (The electronic statgld[] |20} can be chosen to
Our theoretical deve|opment begins with the exact quantum be either adiabatic or diabatic basis fUnCtionS.) SUbStltUtlng egs
mechanical Liouville equation for the density operaifly, given ~ 6 and 7 into eq 1 gives the quantum mechanical Liouville
by52-54 equation
N R ooy 2
ihe = [A, 7] (1) o= 3 Fudy ~ hufly ®)
k=

whereH is the Hamiltonian of the system anl%l,[[)] denotes ¢4 andj = 1,2. For simplicity, we assume in what follows
the commutator oH gndp. In the case of y|brat|onal dynamics . that the off-diagonal elements of the Hamiltonian are individu-
on a single electronic surface, the classical analogue of eq 1 iSally Hermitian: Fi» = Ho1 = V: see ref 51 for a development
the corresponding classical Liouville equation of nonequilibrium - ¢ o general. case Defining} the operators
statistical mechani€% 57 '

N 1~ N
) Ho = 5(Hy + Hy)
S ={Hp} @ 2

. H =H;; — H,, 9)

wherep = p(q, p, t) andH = H(q, p, t) are nowfunctionsof
the classical phase space variallg®) and and using the explicitly Hermitian combinations of the off-

diagonal density operators
_0AdB 09BoA

is the Poisson bracket of the functioAsand B. This result
can be derived by performing a Wigreoyal expansion of Im p,, = l‘(ﬁlz — Poy) (10)
the quantum mechanical Liouville equation in powerf &f:58:59 2

To lowest order ir, the commutator of two operators is related  he |iouville equation can be written explicitly as

to the classical Poisson bracket of the corresponding phase space

A 1. A
Rep;,= E(Plz + P21

functions via 001 N S e
o |hw = [Hyy, pra] + [V. Repy] —i[V, Impy ], (11)
[A, B] — ih{A, B} + O(K®) 4)
9P N N e
In practice, a numerical solution of eq 2 can be accomplished Ihf =[H,,, pyo] T [V, Repygl —i[V, Imp,,l. (12)
(to within statistical uncertainty) by integrating Hamilton's
equations P~ 1~ 1~
ih——=[H,, p1,] + [V, py1 + 0,0 +I[H', p1ols —
q _ 8H/8p ot o] 12] 2 11 22] 12 12]+
p = —oH/aq (5) E[V' P11~ Poaly (13)

using a finite ensemble of initial conditiodgg;(0), p(0))} (i where A, B]; = AB + BA is the anticommutator of the
=1, 2, ...,N) sampled from the probability distribution given operatorsA andB.

by the initial phase space densjiyg, p, t = 0). The density We can now derive semiclassical equations of motion for
of evolving trajectories{(qg;(t), pi(t))} in phase space then the phase space functions corresponding to the density matrix
approximatesp(g, p, t), the exact solution of the Liouville  element operatorg;. Equations 1+13 are written explicitly
equation, eq 2. in terms of commutators and anticommutators of Hermitian
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operators, which have well-defined semiclassical limits. A “generalized function®! owing to the discrete, finite underlying
systematic expansion in powers fofcan be developed using trajectory ensemble. A smooth representationodl’, t) is
the Wigner-Moyal approact¥#°8:59 For our present purposes, obtained by convoluting eq 20 with a test functig()

we keep only the leading terms and thus consider the semiclas-

sical limit. For commutators, the transcription to the semiclas- p, (T, 1) = ff¢(r -1 p,I, 1) dr (21)
sical limit is given by eq 4. For anticommutators, the " !
correspondence is We use a two-dimensional phase space Gaussian test function
A in the numerical calculations below, of the form
[A, Bl — 2A(q, ) B(a, p) + O(h") (14)

To lowest order i, the resulting classical-like equations o o ~
r{— @-g’ (@ pO)Z] o2

motion corresponding to eqs +13 are 1
2‘7-’:0(10p 20’2 20'2
q p
P11~ 2V
5t Ly +{V, Repyp} — f'm P12 (15)

whereoy andoy, are the widths of the test function mandp,
respectively; these widths are determined by numerical consid-
erations in practice. The functiqs(T", t) then evolves by the
motion of the underlying trajectory ensemble under Hamilton’s
; equations. The shape of this function will change as the

P12~ . 1 iV trajectories move through phase space. The total number of
Tt (Lo T i@) pro + 5V, 1y 020 + (P11 — 022) trajectories is constant, and so the phase space trapg Zr

(17) [/ p4(T, ) 02" = 1 is manifestly conserved by this Hamiltonian

implementation of Liouville dynamics.

We now consider the case of coupled multistate dynamics.
Here, the off-diagonal elements dfi induce transfer of

P22 _ o 2V
ot Loopzo +{V, Repyy} + ?Im P12 (16)

Here, we have defined a set of Liouville operatﬁlgs(,u =0,
11, 22) in terms of their action on a phase space fundgn

2) probability between states 1 and 2, and so the individual phase
|:/4 f={H,f} («=0,11,22) (18) space traces g1 and pz arenot separately conserved; only
: the total trace is constant: Jor= Tr p11 + Tr p2 = 1. The
The frequency ternw(q) in eq 17 is given by coupled-state motion is composed of two underlying dynamical
processes. One component is “conventional” classical dynamics
H'(q) onthe respective electronic surfaces (or in the coherence phase
w(q) = “h (19) space forps,), governed by the Liouville equatiortp,/ot =
{H., p.}; this is the same as in the uncoupled case. The
whereH' is the difference of the potential curvelsonthe two  additional inhomogeneous terms not present in the conventional
electronic statesH'(q) = U(q) — Ux(q). classical Liouville equation both affect the dynamics on the

It should be noted that the semiclassical theory developed surfaces and induce flow of probability (or, more correctly,
here ismore classicathan, for instance, alternatives based on classicabmplitudefor the possibly complex off-diagonal terms)
coupled-state semiclassical wave packet dynaficEhe latter between states.
includes quantum effects, such as interference and nodal The ansatz of eq 20 must be generalized in order to allow
structure, for nuclear dynamics on noninteracting electronic this extended Liouville-like dynamics to be modeled with
states. In the absence of electronic coupling, our formalism classical trajectories. A number of possible implementations
reduces to purelglassicaldynamics on the individual potential  can be contemplated, including a surface-hopping approach,

surfaces. where the number of trajectories in the 11, 22, and 12 ensembles
] ] ) are allowed to vary. We instead choose to generalize eq 20 by
lll. Classical Trajectory Implementation introducing a new set of dynamical variable(t)} (j =1, 2,

The semiclassical approach developed above is a generaliza-.., N,), which, together with the(l“j(“)(t)}, characterize the
tion of conventional classical Liouville dynamics. The partial ensembles of trajectories. The variab{@“)(t)} correspond
differential equations for the phase space distributions containto the relative weights of each member of the ensemble, and
a term of the formdp,/ot = {H,, p} (u = 11, 22, 12), which  probability flow between electronic states manifests itself in the
corresponds to the usual Hamiltonian flow of classical trajec- time variations of these weights. For the off-diagonal coherence
tories in phase space. In addition, there are nonclassical termsp, ,, these coefficients are complex numbers and incorporate the

involving the couplingv and the difference potential’'(q). In nonclassical phase resulting from the term involving the
the absence of these additional terms, a trajectory implementa-difference potential (see eq 17]. The coupled-state generaliza-
tion is straightforward: The phase space dengitfl’, t) is tion of p,(T, t) can thus be written

approximated by an ensemble of trajectories

N,
1 N/4 ~ r’t: (u)t(sr—r('“)t 23
p (T, 1) = N Z O — T¥()) (20) AU ]Z & (t) o () (23)
wl=

The smoothing process used to obtajfl, t) from eq 23 is,
where each-function in the sum is two-dimensional and is  again, given by egs 21 and 22.

centered on a member of the ensembld“ﬁéﬁ(t) = (qj(“)(t), In order to use eq 23 as a way of propagating the coupled-
piA(t) G =1, 2, ....N,). Here,N, is the number of trajectories ~ phase space functions(T, 1), equations of motion must be
in theuth ensemble. The tilde on the density signifies that this derived for the{aj(“)(t)}. These are then combined with
expression is not a smooth function but is instead a singular conventional Hamiltonian dynamics for the phase space vari-



Simulation of Coherent Nonadiabatic Dynamics J. Phys. Chem. A, Vol. 102, No. 23, 199895

ables{l“(“ (1}. We derive these equations of motion by entire quantity in the square brackets of eq 24 is then interpreted
conS|der|ng the short-time limit of the integrated form of the as being equivalent to a sum over the trajectories of ensemble
inhomogeneous coupled linear partial differential equations (11), but with updated coefficients. Note that all the trajectory
given in egs 1517. To first order inAt, these short-time  positionsI{(t) are evaluated at timein this phase of the
propagations can be written as: propagation. In the following expressions, we will suppress

Lt Af = s L 0+ b AT DAt + O(AL their time dependence in the interest of notational simplicity.
pull’ )= [p1:(T' B + byy(I5 1) (AT)] The coefficient{ a(t)} in eq 31 are known, whereas the

(24) a™(t + At} are the unknowns that need to be determined.
The criterion for determining the new coefficients is that the

poolT, t+ At) = €42, (T, 1) + (T, ) At + O(ALY)] smoothed representation of the function on the left-hand side
(25) of eq 31 is as close as possible to the smoothed representation
of the function on the right-hand side. Smoothing eq 31 with
pAT, t+ At) = o e DA 5 (T, 1) + b, )AL + the functions gives
o(AtY)] (26) Ny Ny
(11) _ @y _ (11), _ @11
where Za’ (t + At) (T — T >)—Za,. (t) p(C — T +
= =
V(1) < O o
byy(I', 1) = {V(1), RepyI", B} — == Im pyT" 1) (27) Aty {Real® V() (T~ T7) -
k=
2
2V(T) “ () (0) _ 1~(0)
by, 1) = {V(I), Repy(T", O} +=—2—"1Im py(I', 1) (28) . Im a.7(t) V(I,”) ¢(I' — T )} (34)
1
by, ) = S{VAD), pua(T §) + poo(T O} + where
V(D) . 9
5 teu(l ) = (', ] (29) ¢ —Ty)= a—p¢(q ~ 0o P~ Py (35)

and in eq 26 we have made the short-time approximation  T44ing the quantities at timeas known, we find the coefficients

Aloio) _ Ao iont (30) at timet + At by minimizing the phase space norm of the
difference between the two representations of the intermediate
Equations 24-26 form the basis of our numerical propagation Phase space function. Defining

of the densitiep,(I', t) for a time stepAt at timet. The structure
of the equations suggest that each time shfbe split into

11 11
two parts: an update of the coefficien{®{)(t)}, which f() = Z ®) o — 1) +
depends on the inhomogeneous teby($', t) (and the phase

for p12), followed by the action of exp&tLﬂ) which induces © VO o ©)
the trajectories in the ensemble to be propagated in phase space At Z Rea (1) V(") ¢'(C — I\") —
under Hamilton’s equations with Hamiltonia,. k= 5

For the (11) density, the propagation of the coefficients Zm a9 VITOY o(T — T (36
involves solving the equation A m & () V(T o( k)| (36)
Ny Ny an S _
Z a]-(ll)(t + At O — Iﬂj(u)(t)) _ Z a]-(ll)(t) S — andoj = gt + At), we minimize the phase space integral
= . = .

Y% + At S 4 Rea®m VT 81T — TO() — error= [ [dTIf(T) =y oup(C =T (37)

j 8 k k
= i=

—1m a0t VITO)] o(r — rff’)(t))} (31) with respect to the coefficientan;}

where — f [ETIfT) - Z ap( — T2 =0
, dv(q)
V()= “dq (32) m=1,2,..N,) (38)
and This gives
O =Ty = 5(F Fo) =0(a = do) 5 C3(|0 P (33) Ny

J [T ¢(T = TEIRT) — Z ap(C — T =0
These expressions result from substituting the appropriate =

pu(T, t) into eq 27 and evaluating the Poisson brackets. The (m=1,2,..N) (39)
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or

Ny
J [T HD) ¢ — TEY) = Z oy [ [T (T — T5Y)
£
o —TH) (m=1,2,...N) (40)

We now define the following matrices
S’ = [ foC —T) ¢(T — I} &'T

DY) = [ [oT = TReo @ ~ T & (42)

(41)

The elements of these matrices can be evaluated analytically

for the case of a Gaussign The equations for the unknown
coefficients at time + At become

Ny N

Z ngl)aj(ll)(t +At) = Z S%l) aj(ll)(t) .
= =

i
AtkNZO { DRV () Rea(t) — ESSERFS’)) Im aﬁ”(t)} (43)
form=1, 2, ..,Ny, or, in matrix-vector notation
St + At) = STl (t) + At{ DN O Rea ) —
f%s(”\/‘o) Im a(o)(t)} (44)
A parallel analysis gives the result for the (22) coefficients
SP2522 (¢ + At) = S*2a??(t) + At{ DN O Re ) +
%§2°)\/<O> Im a(o)(t)} (45)
Here, we have defined the following diagonal matrices
V(O)ij = V(Fi(O))éij
V@ = v (46)

A similar procedure is followed for the (12) coefficients for
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Figure 1. Potential curves used in numerical calculations.

results in a new set of phase space coordin-bfé’é(t + At)}.
This process is repeated for the number of desired total time
steps.

IV. Numerical Test of Method

In this section, we test our trajectory implementation by
treating a one-dimensional problem and comparing the results
of our molecular dynamics simulation with those of a (numeri-
cally) exact coupled state wave packet calculation. We consider
a model one-dimensional system consisting of motion of a
particle with massnon two coupled excited electronic surfaces.
The model chosen is identical to that considered in ref 51,
allowing a direct comparison between the trajectory implemen-
tation presented here and the numerical grid solution of the
semiclassical partial differential equations given in eqs 15.

The system is excited @t= 0 by a sudden optical excitation
from a harmonic ground electronic state. The two excited states
treated explicitly in the simulation consist of a repulsive
exponential potential
U(q) =Aeg @@ _p (49)

which is initially populated by the optical excitation and which
is crossed by a bound Morse potential

Uz(Q) — D(e—zﬂ(q—QZ) _ Ze—ﬁ(q—QZ)) (50)
The potential curves are shown in Figure 1. These two diabatic
curves are coupled by an off-diagonal teH, = V(q), which

the electronic coherence. Here, the additional factor of the time- is taken to be a Gaussian function centered at the crossing point

dependent phase must be included. The result is
S5Ot + At) = SO @O t) + At{1 DOV @ 4
2
T om0 g0 1502\ _
SOV }q> a (t)+At{2D Vv

1 s<°2>v<2>} oPa?(t) (47)

where the superscript = 0 signifies the (12) ensemble. The

diagonal matrix of phase factors is given by
) —iAto(TW

‘D(rf%— e’ ot m)6mn (48)

The updated coefficienta(t + At)} are then determined by
solving the linear equations of eqs 44, 45, and47.

Oc

V(@) =V, & X" (51)
The numerical values of the potential parameters are given in
Table 1.

The initial quantum state of the system is a localized Gaussian
wave packet on the repulsive surface, centered at the ground-
state equilibrium bond lengthe

vat=0=T)"exf-Ta-a] 62

The parameters, ge, andw are also given in Table 1. In our
model, the laser pulse couples the ground state exclusively to
the repulsive state 1, and thus the initial population on the bound

After the coefficients are updated, the second part of the time state 2 is zero. As the system evolves, the coupling ¥rm
step consists of conventional Hamiltonian dynamics, which will induce population transfer from state 1 to state 2.
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TABLE 1: Numerical Values of Parameters, in atomic units T T T T T

A 2.2782x 102 Vo 1.2x 1073 1 Semiclassical — |
B 2.2782x 1072 c 4.0 Exact Quantum -
a 2.0 G 6.15315
® 5.5 m 1x 10t 0.8 | P11 >
D 1.8225x 1072 0] 4x 1073 *
B 1.0 e 5.7 5 06 |
o7 5.8 5 '
2
Exact quantum mechanical calculations were performed using &

; . 04 1
the standard FFT-based grid method of Kosféffieneralized

to treat coupled wave packet dynamics on multiple electronic
surfaces. 0.2 1 P22~ 1
The initial conditions for the classical trajectory simulations 4
were determined from the Wigner transf&f° of the initial 0 . s s
guantum wave packet, eq 52, which gives a two-dimensional 0 500 1000 1500 2000 2500 3000
phase space Gaussian function; we take this Wigner function time /au
to be identical to the classicab;y(I, 0). A number of Figure 2. Comparison of semiclassica_l trajectqry and exact quantum
possibilities exist for the calculation of the initial conditions ~PoPulations of states 1 and 2 as functions of time.

for the corresponding ensembles. One natural alternative would 4 ‘ . ‘ ‘ . . .
be to sample the initial phase space variaglES"(0)} of the

initially populated (11) state using the corresponding probability 3t ]
distribution p11(I", 0). In this case, all of the coefficients Exact Quantum
{a**(0)} would be equal to unity, and the value @ would 2

be reflected by the resulting density of initial conditions in phase

space. In the calculations reported here, we chose instead to 1

use a simple grid of initial conditions in phase space. With E

this choice, the coefficientsa{*(0)} for the (11) ensemble are 0

not all unity but are chosen to fit the initial distribution. The

(22) and (12) ensembles are also placed on identical grids, but -1

with zero coefficients initially. As a practical consideration,
the size and shape of the grids must be chosen to be large
enough in extent so that there is an overlap of the evolving

grids in the electronic coupling region for all ensembles 3

throughout the simulation. In the calculations presented here, 4 5 &6 7 &8,% 0T
we generated 900 trajectories for each of the three [(11), (22), g

and (12)] ensembles. The trajectories and coefficients were then 4 . _ , . . ‘ ,

propagated as described in the previous section. We employed
a large number of trajectories in this first report to allow the
intrinsic accuracy of the method to be assessed. Semiclassical
In Figure 2, we show the populations of the states 1 and 2 as i
a function of time for both the exact and semiclassical molecular
dynamics. In our trajectory implementation, the population of

the uth electronic state is given by has
o
N,
PM)=Trp,( t)= Za§“>(t) (u=11,22) (53) :
3 "éﬁ.‘!’m}ﬂm ‘
The results of our trajectory-based implementation are compared 5 ’;','::;;",;}}’o:!"‘ _,‘f~ Y
with the corresponding numerically exact quantum mechanical s 'fl,’:’,,

guantities. The figure shows that the state 2 population increases
rapidly aroundt = 500 au, as the state 1 wave packet passes
through the crossing region on its way to dissociation on the

repulsive surface. Approximately 25% of the total population . ' :
. . . . . tions and exact quantum mechanical results. The figure shows 50 curves
is transferred to the bound diabatic state 2 during this passage gpresenting the reduced configuration space probability distribution
The classical trajectory results are in nearly quantitative agree-p,(qg) as a function ofy, as defined in the text. The top curve is the
ment with the quantum wave packet dynamics. = 0 result, and each successive curve below it is displaced down by
A more demanding test of the accuracy of our method is an 60 au in time relative to the previous curve, yielding a total simulation
examination of the time-dependent semiclassical phase spacdime of 3000 au. The result is a spadéme (g, t) representation of the
probabilities and coherences themselves. In parts b of Figurese¥olution ofP. (a, top) Exact quantum mechanical results. (b, bottom)
3—6, we show the evolution of reduced semiclassical config-
uration space densitiéﬁc(q, t) = fpi(a, p, t) dp, In parts a of The figures summarize the entire simulation in a spdtee
Figures 3-6, the analogous quantum mechanical quantities (g, ) diagram, withP;(q, t) as the dependent variable.
P?(q, t) = yia.t) yj(q, t) are shown. (The real and imaginary Inspection of these figures reveals that the classical trajectory

parts ofP15(q, t) are shown in Figures 5 and 6, respectively.) ensembles, generalized by the evolving coefficie{ra%@(t)},

4 5 6 7 8 9 10 11 12

Figure 3. Comparison of semiclassical generalized distribution func-

Semiclassical trajectory results.
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4 T T T T T : T 4 T T T T T T T
3+ 1 3+ 1
Exact Quantum Exact Quantum
2+ 1 2+ .
o 1r 1
N &
o ©
o
4 T T T T T T T 4 T T T T T T T
3+ . 3+ .
Semiclassical Semiclassical
2+ : 2+ -
1r 1 o 1t 1
N o
o 0 D'a:)
Figure 4. Same as Figure 3, fd?z. Figure 5. Same as Figure 3, for R@.

give an excellent representation of the corresponding quantumV. Discussion
mechanical density matrix elements at a fine level of detail.
This agreement is nearly perfect at early times. The close
agreement is obtained even for the “nonclassical” electronic
coherencepi(I’, t). This quantity is a complex valued,
oscillatory function of the phase space varialles (q, p). In

the exact calculations, its structure results from the interplay of
the product of the quantum amplitudgs and . In our
semiclassical trajectory formulation, this comes about instead

by a coherent superposition of the (12) ensemble trajectorles,member of the coupled ensembles. Physically, these new

. . 2) .
each weighted by a complex amplitud”(t). This coherent dynamical variables represent the evolving weights (and phases
superposition otlassicaltrajectories, evolving under Hamil- ¢, the electronic coherence) of the trajectories. All of the
tonian dynamics with the averaged Hamiltonldg accumulat- — honclassical effects of electronic coupling and coherence are
ing a phase that IS a time integral of the difference potential yescriped by the equations of motion for these coefficients, while
(divided by Planck’s constant) and, with additional nonclassical e phase space trajectories themselves obey conventional

coupling terms, does a remarkable job of faithfully capturing Hamilton’s equations, just as in the classical single-state case.
the quantum mechanical structure of the electronic coherence Despite the use of classical trajectories in our numerical

and its dependence on the nuclear phase space variables. They, o mentation, we stress that our approach is explicitly a theory
level of agreement obtained here, particularly at early times, is ;¢ iha evolution of the distribution functionsp; (T, t)

comparable to the agreement between numerically exact quanyyemselvesnot of individual, independent trajectories. This
tum wavepacket dynamics and a corresponding direct numericalig 5, important point, and at the heart of the description of
grid S(_)Iution of the semiclassical phase space partial differential nonclassical processes. Electronic coherence in our theory is
equations, eqs 1517. (See ref 51 for comparison.) not a property of any individual trajectory but results from the
Near the end of the simulation, numerical noise begin to “interference” of a whole ensemble of trajectories modeling an
appear in the trajectory results. We believe that these occurevolvingfunction This function, in turn, both controls and is
owing to instabilities in our simple numerical implementation, influenced by the evolution of other functionthe probability
and we are currently developing and testing more efficient and distributions on the two surfaceand thus influences the
stable algorithms. generalized dynamics of many other trajectories.

In this paper, we have described a trajectory-based imple-
mentation of our recently proposed semiclassical-limit approach
to molecular dynamics on coupled electronic surf&éeBuild-
ing on the conventional method of modeling single surface
dynamical processes in the classical limit using trajectory
integration and ensemble averaging, we presented an augmented
dynamical description of multistate classical dynamics, based
on adding additional time-dependent coefficients to each
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Figure 6. Same as Figure 3, for IRy

When used as a numerical method for solving the coupled-
state partial differential equations for thg(T’, t), the members
of all the ensembles become entwined in a web of mutual
interactions that is quite different from their rigorous indepen-
dence in a conventional single-surface molecular dynamics
simulation. We conjecture that many of the fundamental

problems associated with previous approaches to modeling

J. Phys. Chem. A, Vol. 102, No. 23, 199899

tion transfer and the evolution of electronic coherence, to be
modeled with excellent accuracy, at least in principle. More
work needs to be done, however, before this approach becomes
an efficient numerical method for modeling many-body systems.
Refinements currently under development include methods for
incorporating birth, death, and “retirement” of trajectories to
allow the total number ahteractingmembers of the ensembles

to be minimized while keeping the ensembles overlapping in
phase space regions where coupling is operative; the use of more
elaborate higher-order representations of the short-time propaga-
tor, allowing larger time steps to be employed; and the
incorporation of dynamical approximations into the trajectory
equations of motion, permitting an explicit and detailed calcula-
tion of the full electronic coherence to be avoided for applica-
tions where it is not required. These will be discussed in future
publications.
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