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In this paper, we describe a trajectory-based implementation of the semiclassical-limit Liouville equation
approach to molecular dynamics on multiple electronic surfaces. The formalism is briefly reviewed, and a
realization of the general theory in the context of a classical trajectory-based molecular dynamics algorithm
is described. The method is applied to a model problem consisting of one-dimensional motion on two coupled
electronic surfaces, and the results are compared with coupled-state wave packet calculations. Excellent
agreement is obtained, even for the detailed phase space structure of the nonclassical electronic coherences,
demonstrating that electronic coherent effects can be included naturally in generalized classical molecular
dynamics simulations.

I. Introduction

Chemical reactions occur by the rearrangement of atoms,
breaking and remaking bonds to form the final product species
from the initial reactant molecules. Whether in isolation in a
dilute gas or under the influence of the surrounding solvent in
a condensed phase, this chemical transformation is adynamical
process involving the mechanical motion of electrons and atomic
nuclei. These underlying elementary dynamical steps occur on
the ultrafast time scales of molecular translations, vibrations,
rotations, and electronic transitions, most conveniently measured
in femtoseconds. In this sense, all chemistry isfemtochemistry.1-4

Until recently, the details of elementary dynamical processes
in chemical systems could only be inferred indirectly from
measurements with time resolution many orders of magnitude
longer than the intrinsic dynamical time scales. The rapidly
advancing field of femtochemistry now allows us to watch
chemical reactions unfold in real time.1-4

The interpretation of the wealth of detail provided by ultrafast
experiments poses fascinating but challenging opportunities for
theory. The highly nonequilibrium initial ensembles and
subsequent nonlinear nonseparable dynamics induced by ul-
trafast laser excitation lead to conditions that can violate the
limits of validity of the traditional equilibrium statistical
mechanical or linear response-based theories of condensed-phase
reaction rates and dynamics.5-7 Direct computer simulation of
many-body systems is an increasingly powerful tool for model-
ing condensed-phase ultrafast dynamics.8 Still, a fully quantum
mechanical treatment of the electronic and nuclear degrees of
freedom for a many-body system is an intractable numerical
problem and will probably remain so for the foreseeable future.
It is thus necessary to turn to simplifying approximations and
conceptual models in order for progress to be made.
A variety of approximate methods for simulating many-body

chemical dynamics have been developed and applied to a range
of physical problems. Some approaches strive to retain a fully
quantum mechanical treatment of the atomic motion, at the
expense of making rather severe dynamical approximations. An
example of this philosophy is found in the array of methods
based on the time-dependent mean-field approximation.9-20

Other methods treat the fully correlated atomic motion without

dynamical approximations using classical mechanical trajectories
instead of quantum wave packets. This captures the full
classical many-body nonlinear dynamics of the system, but at
the expense of neglecting quantum effects. Despite the intrinsi-
cally quantum nature of molecular systems, classical trajectory
integration often works surprisingly well. An illustrative
example can be found in our recent work on photodissociation-
recombination of I2 in rare gas solids.21-25 Here, excellent
agreement between experiment and theory was achieved. A
fully-correlated classical description of the many-body caging
and recombination was essential for modeling the key dynamical
processes responsible for the reformation of the I2 molecule with
the large degree of vibrational coherence observed experimen-
tally. In particular, strongly correlated collisions between the
atoms of the nascent I2 and a collective cage oscillation were
found to play an essential role in the creation of a localized I2

phase space ensemble (the classical analogue of a localized wave
packet) in a harmonic part of the I2 potential, building in the
long-lasting vibrational coherence.24 This delicate phase match-
ing of highly nonlinear system and bath oscillations would not
be correctly modeled by, for instance, a time-dependent self-
consistent field wave packet calculation, where a mean-field
separation of these subsystems is performed.
For many problems of physical interest, however, the nuclear

and electronic degrees of freedom cannot be uncoupled, and
electronic transitions unavoidably accompany the motion of the
nuclei. This introduces an intrinsically quantum mechanical
feature into the dynamics. Numerous attempts have been made
to develop methods that allow the intuitive and computational
advantages of classical mechanics to be combined with the
possibility of transitions between electronic states. Landau,26

Zener,27 and Stuckelberg28 developed early theories of electronic
transitions induced by scattering events described by simple
knownclassical trajectories.29 The classical motion of the nuclei
was assumed to be independent of the electronic dynamics in
these early studies, which is a good approximation in the limit
of high kinetic energy collisions. In general, though, the coupled
electronic-nuclear dynamics must be solved simultaneously and
self-consistently, and several approaches to this problem have
been proposed.30,31 A significant amount of work has been
based on the “mean trajectory approximation”. Here, the
classical and quantum dynamics are combined by assuming that† Alfred P. Sloan Foundation Fellow.
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a single classical trajectory describes the nuclear motion and
evolves in a time-dependent potential given by the instantaneous
quantum expectation value of the full potential energy operator.
This trajectory, in turn, provides an explicit time dependence
to the quantum Hamiltonian operator via its dependence on the
nuclear coordinates, and the coupled Schrodinger and Hamil-
ton’s equations are solved simultaneously and self-consistently.
This dynamical approach forms the basis of a number of
methods, including the time-dependent mean field9-20 and self-
consistent eikonal32 approximations and the classical electron
model.33-39 These methods share the mean trajectory equations
of motion but differ in the details of their implementation.
The mean trajectory methods are quite useful for certain types

of physical problems. However, they suffer from a fundamental
dynamical inconsistency.40 In asymptotic regions where elec-
tronic transitions become negligible, the full dynamics should
partition into distinct trajectory ensembles on each populated
electronic surface. The mean trajectory method instead leads
to a single ensemble, each member of which is evolving on its
own weighted average of the quantum state-dependent asymp-
totic potentials. In certain applications, this is acceptable, while
in others, unacceptable nonphysical effects result. The classical
electron model avoids this problem by binning the final
electronic actions, leading to a well-defined asymptotic elec-
tronic state.33-39 Phenomenological electronic damping is
introduced in some implementations17 in an effort to avoid these
undesirable effects.
An alternative approach to coupled-state molecular dynamics

that does not suffer from the above inconsistencies is the surface-
hopping method, introduced by Tully and Preston41 and still
under active development.40,42-44 In a surface-hopping calcula-
tion, an ensemble of trajectories is propagated using standard
classical trajectory integration but with an important modifica-
tion. At a given instant of time, each trajectory in the ensemble
evolves under the influence of a single electronic surface but
may undergo a sudden transition, or “hop”, between the states,
based on a transfer probability and hopping algorithm. A
disadvantage of the standard surface-hopping approach is that
it treats the electronic dynamics asincoherent, ignoring the phase
relation between the electronic states. Recent implementations
of the surface-hopping method couple a coherently evolving
electronic wave function toeachtrajectory in an ensemble. This
trajectory is found at every instant on a definite electronic
surface but may “hop” at any time between these surfaces.40,44

The absolute square of the instantaneous quantum-state ampli-
tudes are used as input for the stochastic hopping algorithm.
Quantum coherence is thus incorporated into the surface-hopping
methodat some leVel, but the fundamental justification for the
manner in which it is treated is not well-established, and spurious
effects, such astoo muchcoherence in some cases, can result.40

Despite this potential drawback, surface hopping has been
employed successfully in a broad range of physical applications.
A formal theory of coupled electronic-nuclear dynamics was

proposed by Pechukas,45,46 based on a semiclassical analysis
of the full Feynman path integral47 expression for the electronic-
nuclear propagator. Unfortunately, the resulting elegant formal-
ism is difficult to implement in practice, owing to nonlocal time
effects: the forces on the classical subsystem in the semiclassical
limit depend on the complete time history of the quantum
subsystem, which in turn depends on the complete history of
the classical motion. Progress has recently been made by
Webster et al.48-50 in implementing the Pechukas formalism in
numerical simulations, while Coker and co-workers have

clarified the connection between this approach and the surface-
hopping method in the limit of short electronic coherence
time.31,44

In most of these previous attempts at combining classical and
quantum elements into one consistent dynamical theory, the
probabilistic description of the quantum subsystem in terms of
its wave function or density matrix is coupled to a classical
description formulated in terms ofindependent classical tra-
jectories, either individually or as part of a final average over
an ensemble. A lone classical trajectory does not have a natural
quantum analogue, and the coupled trajectory-wave function
description used in these methods can lead to significant
problems and inconsistencies, as briefly described above.
Recently, we proposed an alternative approach to classical

dynamics on coupled electronic surfaces, based on a semiclas-
sical limit of the multistate quantum Liouville equation for the
electronic-nuclear dynamics.51 The resulting formalism yields
equations of motion for coupled phase space distribution
functions corresponding to both the electronic state-dependent
nuclear probability distributions and the electronic coherence
between states. These equations of motion have the form of a
generalized nonequilibrium statistical mechanics, and the elec-
tronic coupling manifests itself as extra terms in the classical
Liouville-like equations governing the distributions. These
additional terms act as “sources” and “sinks” of probability flow
between states and also control the generation, evolution, and
decay of electronic coherences. In marked contrast with other
approaches that introduce classical mechanics in terms of
individual trajectories or classical paths, our formalism is
developed from the outset in terms of the coupling between
the distribution functions representing populations or coherences
themselves. The ability to treat electronic coherences naturally
within a classical-like context is a unique advantage of this
approach.
In a previous publication,51we described in detail the general

formalism of our coupled Liouville-like representation of
classical molecular dynamics on coupled electronic states. In
addition, we provided analytical results in simplifying limits
and made comparisons with conventional descriptions of
nonadiabatic dynamics, such as Landau-Zener theory.26,27,29We
also presented a direct numerical solution of the generalized
Liouville partial differential equations for a one-dimensional,
two-state model system. The results were compared with
coupled state wave packet calculations, and excellent agreement
was observed, justifying a posteriori the approximations made
in the derivation of the semiclassical equations of motion.
However, the grid solution of the phase space partial differential
equations we presented requires even more numerical effort than
the exact quantum approach and, as it stands, does not constitute
a practical method for treating many-body coupled-state dynam-
ics. An efficient trajectory-based implementation is desirable,
preferably in the form of a relatively minor modification of the
standard classical molecular dynamics computer simulation. The
challenge of developing such a method is touse classical
trajectories as a numerical tool to solve equations of motion
that are, at a fundamental level, more general than Hamilton’s
equations for orbits in phase space.
In this paper, we present a trajectory implementation of our

coupled-surface semiclassical Liouville approach to nonadiabatic
dynamics. Such an implementation is straightforward for
dynamics on asingleelectronic surface: In that case, evolution
of the phase space distribution function solving Liouville’s
equation is achieved simply by propagating an ensemble of
trajectories sampled from the initial phase space density by the
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corresponding Hamilton’s equations. A generalization of this
Hamiltonian trajectory approach is required to incorporate the
effect of the nonclassical coupling terms in the Liouville-like
equations of motion. We present such a generalization below
and compare the results of its application with numerically exact
quantum results for a simple but nontrivial one-dimensional two-
state model problem. We treat the same model problem as
considered in our previous publication,51 which allows a direct
comparison of the accuracy of the trajectory implementation
with the phase space grid solution of the underlying semiclas-
sical Liouville-like equations.
The organization of this paper is as follows: In section II,

we briefly review the formalism of the coupled-state semiclas-
sical Liouville approach. In section III, we describe the
realization of this formalism as a classical trajectory-based
molecular dynamics algorithm. Section IV presents the results
of applying the method to a model problem and gives a
comparison of the trajectory results with the analogous exact
quantum quantities. Finally, a discussion is given in section
V.

II. Theory

Our theoretical development begins with the exact quantum
mechanical Liouville equation for the density operatorF̂(t), given
by52-54

whereĤ is the Hamiltonian of the system and [Ĥ, F̂] denotes
the commutator ofĤ andF̂. In the case of vibrational dynamics
on a single electronic surface, the classical analogue of eq 1 is
the corresponding classical Liouville equation of nonequilibrium
statistical mechanics55-57

whereF ) F(q, p, t) andH ) H(q, p, t) are nowfunctionsof
the classical phase space variables(q,p) and

is the Poisson bracket of the functionsA andB. This result
can be derived by performing a Wigner-Moyal expansion of
the quantum mechanical Liouville equation in powers ofp.54,58,59

To lowest order inp, the commutator of two operators is related
to the classical Poisson bracket of the corresponding phase space
functions via

In practice, a numerical solution of eq 2 can be accomplished
(to within statistical uncertainty) by integrating Hamilton’s
equations

using a finite ensemble of initial conditions{(qj(0), pj(0))} (j
) 1, 2, ...,N) sampled from the probability distribution given
by the initial phase space densityF(q, p, t ) 0). The density
of evolving trajectories{(qj(t), pj(t))} in phase space then
approximatesF(q, p, t), the exact solution of the Liouville
equation, eq 2.

The classical limit in the more general case of a Hamiltonian
that is amatrix of operators representing vibrational dynamics
on multiple electronic states is not as straightforward. The
coupling between the highly quantum mechanical electronic
states introduces an intrinsically nonclassical component to the
evolution of the full densityF. Nonetheless, a consistent
semiclassical limit can be derived.51 Here, we briefly review
the approach for the case of one-dimensional vibrational motion
on two coupled electronic states; the method can be easily
generalized to treatN coupled surfaces andn vibrational degrees
of freedom.
The Hamiltonian and density operators for the two-state

problem are given in the electronic basis{|1〉, |2〉} by

and

respectively. (The electronic states{|1〉, |2〉} can be chosen to
be either adiabatic or diabatic basis functions.) Substituting eqs
6 and 7 into eq 1 gives the quantum mechanical Liouville
equation

for i and j ) 1,2. For simplicity, we assume in what follows
that the off-diagonal elements of the Hamiltonian are individu-
ally Hermitian: Ĥ12 ) Ĥ21 ≡ V̂; see ref 51 for a development
of the general case. Defining the operators

and using the explicitly Hermitian combinations of the off-
diagonal density operators

the Liouville equation can be written explicitly as

where [Â, B̂]+ ≡ ÂB̂ + B̂Â is the anticommutator of the
operatorsÂ and B̂.
We can now derive semiclassical equations of motion for

the phase space functions corresponding to the density matrix
element operatorsF̂ij. Equations 11-13 are written explicitly
in terms of commutators and anticommutators of Hermitian

ip
∂F̂
∂t

) [Ĥ, F̂] (1)

∂F
∂t

) {H, F} (2)

{A, B} ) ∂A
∂q
∂B
∂p

- ∂B
∂q
∂A
∂p

(3)

[Â, B̂] f ip{A, B} + O(p3) (4)

q̆) ∂H/∂p

p̆) -∂H/∂q (5)

Ĥ ) (Ĥ11 Ĥ12

Ĥ21 Ĥ22
) (6)

F̂ )(F̂11 F̂12
F̂21 F̂22) (7)

ip
∂F̂ij

∂t
) ∑

k)1

2

ĤikF̂kj - F̂ikĤkj (8)

Ĥo ) 1
2
(Ĥ11 + Ĥ22)

Ĥ′ ) Ĥ11 - Ĥ22 (9)

Re F̂12 ) 1
2
(F̂12 + F̂21)

Im F̂12 ) 1
2i
(F̂12 - F̂21) (10)

ip
∂F̂11
∂t

) [Ĥ11, F̂11] + [V̂, ReF̂12] - i[V̂, Im F̂12]+ (11)

ip
∂F̂22
∂t

) [Ĥ22, F̂22] + [V̂, ReF̂12] - i[V̂, Im F̂12]+ (12)

ip
∂F̂12
∂t

) [Ĥo, F̂12] + 1
2
[V̂, F̂11 + F̂22] + 1

2
[Ĥ′, F̂12]+ -

1
2
[V̂, F̂11 - F̂22]+ (13)
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operators, which have well-defined semiclassical limits. A
systematic expansion in powers ofp can be developed using
the Wigner-Moyal approach.54,58,59 For our present purposes,
we keep only the leading terms and thus consider the semiclas-
sical limit. For commutators, the transcription to the semiclas-
sical limit is given by eq 4. For anticommutators, the
correspondence is

To lowest order inp, the resulting classical-like equations of
motion corresponding to eqs 11-13 are

Here, we have defined a set of Liouville operatorsL̂µ (µ ) 0,
11, 22) in terms of their action on a phase space functionf(q,
p)

The frequency termω(q) in eq 17 is given by

whereH′ is the difference of the potential curvesUi on the two
electronic states:H′(q) ) U1(q) - U2(q).
It should be noted that the semiclassical theory developed

here ismore classicalthan, for instance, alternatives based on
coupled-state semiclassical wave packet dynamics.60 The latter
includes quantum effects, such as interference and nodal
structure, for nuclear dynamics on noninteracting electronic
states. In the absence of electronic coupling, our formalism
reduces to purelyclassicaldynamics on the individual potential
surfaces.

III. Classical Trajectory Implementation

The semiclassical approach developed above is a generaliza-
tion of conventional classical Liouville dynamics. The partial
differential equations for the phase space distributions contain
a term of the form∂Fµ/∂t ) {Hµ, Fµ} (µ ) 11, 22, 12), which
corresponds to the usual Hamiltonian flow of classical trajec-
tories in phase space. In addition, there are nonclassical terms
involving the couplingV and the difference potentialH′(q). In
the absence of these additional terms, a trajectory implementa-
tion is straightforward: The phase space densityFµ(Γ, t) is
approximated by an ensemble of trajectories

where eachδ-function in the sum is two-dimensional and is
centered on a member of the ensemble atΓj

(µ)(t) ≡ (qj
(µ)(t),

pj
(µ)(t)) (j )1, 2, ...,Nµ). Here,Nµ is the number of trajectories
in theµth ensemble. The tilde on the density signifies that this
expression is not a smooth function but is instead a singular

“generalized function”,61 owing to the discrete, finite underlying
trajectory ensemble. A smooth representation ofFµ(Γ, t) is
obtained by convoluting eq 20 with a test functionφ(Γ)

We use a two-dimensional phase space Gaussian test function
in the numerical calculations below, of the form

whereσq andσp are the widths of the test function inq andp,
respectively; these widths are determined by numerical consid-
erations in practice. The functionFµ(Γ, t) then evolves by the
motion of the underlying trajectory ensemble under Hamilton’s
equations. The shape of this function will change as the
trajectories move through phase space. The total number of
trajectories is constant, and so the phase space trace TrFµ ≡
∫∫Fµ(Γ, t) d2Γ ) 1 is manifestly conserved by this Hamiltonian
implementation of Liouville dynamics.
We now consider the case of coupled multistate dynamics.

Here, the off-diagonal elements ofĤ induce transfer of
probability between states 1 and 2, and so the individual phase
space traces ofF11 andF22 arenot separately conserved; only
the total trace is constant: TrF ) Tr F11 + Tr F22 ) 1. The
coupled-state motion is composed of two underlying dynamical
processes. One component is “conventional” classical dynamics
on the respective electronic surfaces (or in the coherence phase
space forF12), governed by the Liouville equations∂Fµ/∂t )
{Hµ, Fµ}; this is the same as in the uncoupled case. The
additional inhomogeneous terms not present in the conventional
classical Liouville equation both affect the dynamics on the
surfaces and induce flow of probability (or, more correctly,
classicalamplitudefor the possibly complex off-diagonal terms)
between states.
The ansatz of eq 20 must be generalized in order to allow

this extended Liouville-like dynamics to be modeled with
classical trajectories. A number of possible implementations
can be contemplated, including a surface-hopping approach,
where the number of trajectories in the 11, 22, and 12 ensembles
are allowed to vary. We instead choose to generalize eq 20 by
introducing a new set of dynamical variables{aj

(µ)(t)} (j )1, 2,
..., Nµ), which, together with the{Γj

(µ)(t)}, characterize the
ensembles of trajectories. The variables{aj

(µ)(t)} correspond
to the relative weights of each member of the ensemble, and
probability flow between electronic states manifests itself in the
time variations of these weights. For the off-diagonal coherence
F12, these coefficients are complex numbers and incorporate the
nonclassical phase resulting from the term involving the
difference potential (see eq 17]. The coupled-state generaliza-
tion of F̃µ(Γ, t) can thus be written

The smoothing process used to obtainFµ(Γ, t) from eq 23 is,
again, given by eqs 21 and 22.
In order to use eq 23 as a way of propagating the coupled-

phase space functionsFµ(Γ, t), equations of motion must be
derived for the {aj

(µ)(t)}. These are then combined with
conventional Hamiltonian dynamics for the phase space vari-

[Â, B̂]+ f 2A(q, p) B(q, p) + O(p2) (14)

∂F11
∂t

) L̂11F11 + {V, ReF12} - 2V
p
Im F12 (15)

∂F22
∂t

) L̂22F22 + {V, ReF12} + 2V
p
Im F12 (16)

∂F12
∂t

) (L̂o - iω) F12 + 1
2
{V, F11 + F22} + iV

p
(F11 - F22)

(17)

L̂µ f ≡ {Hµ, f} (µ ) 0, 11, 22) (18)

ω(q) ≡ H′(q)
p

(19)

F̃µ(Γ, t) )
1

Nµ
∑
j)1

Nµ

δ(Γ - Γj
(µ)(t)) (20)

Fµ(Γ, t) )∫∫φ(Γ - Γ′) F̃µ(Γ′, t) d2Γ′ (21)

φ(Γ - Γo) ≡ φ(q- qo, p- po) )

1
2πσqσp

exp[-
(q- qo)

2

2σq
2

-
(p- po)

2

2σp
2 ] (22)

F̃µ(Γ, t) ) ∑
j)1

Nµ

aj
(µ)(t) δ(Γ - Γj

(µ)(t)) (23)
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ables {Γj
(µ)(t)}. We derive these equations of motion by

considering the short-time limit of the integrated form of the
inhomogeneous coupled linear partial differential equations
given in eqs 15-17. To first order in∆t, these short-time
propagations can be written as:

where

and in eq 26 we have made the short-time approximation

Equations 24-26 form the basis of our numerical propagation
of the densitiesFµ(Γ, t) for a time step∆t at timet. The structure
of the equations suggest that each time step∆t be split into
two parts: an update of the coefficients{aj

(µ)(t)}, which
depends on the inhomogeneous termsbµ(Γ, t) (and the phaseω
for F12), followed by the action of exp(∆tL̂µ), which induces
the trajectories in the ensemble to be propagated in phase space
under Hamilton’s equations with HamiltonianHµ.
For the (11) density, the propagation of the coefficients

involves solving the equation

where

and

These expressions result from substituting the appropriate
F̃µ(Γ, t) into eq 27 and evaluating the Poisson brackets. The

entire quantity in the square brackets of eq 24 is then interpreted
as being equivalent to a sum over the trajectories of ensemble
(11), but with updated coefficients. Note that all the trajectory
positionsΓj

(µ)(t) are evaluated at timet in this phase of the
propagation. In the following expressions, we will suppress
their time dependence in the interest of notational simplicity.

The coefficients{aj
(µ)(t)} in eq 31 are known, whereas the{

aj
(11)(t + ∆t)} are the unknowns that need to be determined.
The criterion for determining the new coefficients is that the
smoothed representation of the function on the left-hand side
of eq 31 is as close as possible to the smoothed representation
of the function on the right-hand side. Smoothing eq 31 with
the functionφ gives

where

Taking the quantities at timet as known, we find the coefficients
at time t + ∆t by minimizing the phase space norm of the
difference between the two representations of the intermediate
phase space function. Defining

andRj ≡ aj
(11)(t + ∆t), we minimize the phase space integral

with respect to the coefficients{Rj}

This gives

F11(Γ, t + ∆t) ) e∆tL̂11[F11(Γ, t) + b11(Γ, t)∆t + O(∆t2)]

(24)

F22(Γ, t + ∆t) ) e∆tL̂22[F22(Γ, t) + b22(Γ, t)∆t + O(∆t2)]

(25)

F12(Γ, t + ∆t) ) e∆tL̂0 e-iω(Γ)∆t[F12(Γ, t) + b12(Γ, t)∆t +

O(∆t2)] (26)

b11(Γ, t) ) {V(Γ), ReF12(Γ, t)} -
2V(Γ)

p
Im F12(Γ, t) (27)

b22(Γ, t) ) {V(Γ), ReF12(Γ, t)} +
2V(Γ)

p
Im F12(Γ, t) (28)

b12(Γ, t) ) 1
2
{V(Γ), F11(Γ, t) + F22(Γ, t)} +

iV(Γ)
p

[F11(Γ, t) - F22(Γ, t)] (29)

e∆t(L̂0-iω) = e∆tL̂0 e-iω∆t (30)

∑
j)1

N1

aj
(11)(t + ∆t) δ(Γ - Γj

(11)(t)) ) ∑
j)1

N1

aj
(11)(t) δ(Γ -

Γj
(11)(t)) + ∆t ∑

k)1

No {Reak(0)(t) V′[Γk
(0)(t)] δ′(Γ - Γk

(0)(t)) -

2

p
Im ak

(0)(t) V[Γk
(0)(t)] δ(Γ - Γk

(0)(t))} (31)

V′(Γ) ≡ dV(q)
dq

(32)

δ′(Γ - Γ0) ≡ ∂

∂p
δ(Γ - Γ0) ≡ δ(q- q0)

d
dp

δ(p- p0) (33)

∑
j)1

N1

aj
(11)(t + ∆t) φ(Γ - Γj

(11)) ) ∑
j)1

N1

aj
(11)(t) φ(Γ - Γj

(11)) +

∆t∑
k)1

No {Reak(0)(t) V′(Γk
(0)) φ′(Γ - Γk

(0)) -

2

p
Im ak

(0)(t) V(Γk
(0)) φ(Γ - Γk

(0))} (34)

φ′(Γ - Γo) ≡ ∂

∂p
φ(q- qo, p- po) (35)

f(Γ) ≡∑
j)1

N1

aj
(11)(t) φ(Γ - Γj

(11)) +

∆t ∑
k)1

No {Reak(0)(t) V′(Γk
(0)) φ′(Γ - Γk

(0)) -

2

p
Im ak

(0)(t) V(Γk
(0)) φ(Γ - Γk

(0))} (36)

error)∫∫d2Γ|f(Γ) - ∑
j)1

N1

Rjφ(Γ - Γj
(11))|2 (37)

∂

∂Rm

∫∫d2Γ|f(Γ) - ∑
j)1

N1

Rjφ(Γ - Γj
(11))|2 ) 0

(m) 1, 2, ...,N1) (38)

∫∫d2Γ φ(Γ - Γm
(11))[f(Γ) - ∑

j)1

N1

Rjφ(Γ - Γj
(11))] ) 0

(m) 1, 2, ...,N1) (39)
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or

We now define the following matrices

The elements of these matrices can be evaluated analytically
for the case of a Gaussianφ. The equations for the unknown
coefficients at timet + ∆t become

for m ) 1, 2, ...,N1, or, in matrix-vector notation

A parallel analysis gives the result for the (22) coefficients

Here, we have defined the following diagonal matrices

A similar procedure is followed for the (12) coefficients for
the electronic coherence. Here, the additional factor of the time-
dependent phase must be included. The result is

where the superscriptµ ) 0 signifies the (12) ensemble. The
diagonal matrix of phase factors is given by

The updated coefficients{aj
(µ)(t + ∆t)} are then determined by

solving the linear equations of eqs 44, 45, and 47.62

After the coefficients are updated, the second part of the time
step consists of conventional Hamiltonian dynamics, which

results in a new set of phase space coordinates{Γj
(µ)(t + ∆t)}.

This process is repeated for the number of desired total time
steps.

IV. Numerical Test of Method

In this section, we test our trajectory implementation by
treating a one-dimensional problem and comparing the results
of our molecular dynamics simulation with those of a (numeri-
cally) exact coupled state wave packet calculation. We consider
a model one-dimensional system consisting of motion of a
particle with massmon two coupled excited electronic surfaces.
The model chosen is identical to that considered in ref 51,
allowing a direct comparison between the trajectory implemen-
tation presented here and the numerical grid solution of the
semiclassical partial differential equations given in eqs 15-17.
The system is excited att ) 0 by a sudden optical excitation
from a harmonic ground electronic state. The two excited states
treated explicitly in the simulation consist of a repulsive
exponential potential

which is initially populated by the optical excitation and which
is crossed by a bound Morse potential

The potential curves are shown in Figure 1. These two diabatic
curves are coupled by an off-diagonal termH12 ) V(q), which
is taken to be a Gaussian function centered at the crossing point
qc

The numerical values of the potential parameters are given in
Table 1.
The initial quantum state of the system is a localized Gaussian

wave packet on the repulsive surface, centered at the ground-
state equilibrium bond lengthqe

The parametersm, qe, andω are also given in Table 1. In our
model, the laser pulse couples the ground state exclusively to
the repulsive state 1, and thus the initial population on the bound
state 2 is zero. As the system evolves, the coupling termV12
will induce population transfer from state 1 to state 2.

∫∫d2Γ f(Γ) φ(Γ - Γm
(11)) ) ∑

j)1

N1

Rj∫∫d2Γ φ(Γ - Γm
(11))

φ(Γ - Γj
(11)) (m) 1, 2, ...,N1) (40)

Smj
(µν) )∫∫φ(Γ - Γm

(µ)) φ(Γ - Γj
(ν)) d2Γ (41)

Dmj
(µν) )∫∫φ(Γ - Γm

(µ))
∂

∂p
φ(Γ - Γj

(ν)) d2Γ (42)

∑
j)1

N1

Smj
(11)aj

(11)(t + ∆t) ) ∑
j)1

N1

Smj
(11)aj

(11)(t) +

∆t∑
k)1

No {Dmk
(10)V′(Γk

(0)) Reak
(0)(t) -

2

p
Smk
(10)(Γk

(0)) Im ak
(0)(t)} (43)

S(11)a(11)(t + ∆t) ) S(11)a(11)(t) + ∆t{D(10)V′(0) Rea(0)(t) -

2
p
S(10)V(0) Im a(0)(t)} (44)

S(22)a(22)(t + ∆t) ) S(22)a(22)(t) + ∆t{D(20)V′(0) Rea(0)(t) +

2
p
S(20)V(0) Im a(0)(t)} (45)

V(0)
ij ) V(Γi

(0))δij

V′ij
(0) ) V′(Γi

(0))δij (46)

S(00)a(0)(t + ∆t) ) S(00)Φ(0)a(0)(t) + ∆t{12D(01)V′(1) +

i
p
S(01)V(1)} Φ(1)a(1)(t) + ∆t{12D(02)V′(2) -

i
p
S(02)V(2)}Φ(2)a(2)(t) (47)

Φnm
(µ) ) e-i∆tω(Γm

(µ))δmn (48)

Figure 1. Potential curves used in numerical calculations.

U1(q) ) A e-R(q-q1) - B (49)

U2(q) ) D(e-2â(q-q2) - 2e-â(q-q2)) (50)

V(q) ) Vo e
-c(q-qc)2 (51)

ψ(q, t ) 0)) (mω
πp )

1/4
exp[- mω

2p
(q- qe)

2] (52)
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Exact quantum mechanical calculations were performed using
the standard FFT-based grid method of Kosloff,63 generalized
to treat coupled wave packet dynamics on multiple electronic
surfaces.
The initial conditions for the classical trajectory simulations

were determined from the Wigner transform58,59 of the initial
quantum wave packet, eq 52, which gives a two-dimensional
phase space Gaussian function; we take this Wigner function
to be identical to the classicalF11(Γ, 0). A number of
possibilities exist for the calculation of the initial conditions
for the corresponding ensembles. One natural alternative would
be to sample the initial phase space variables{Γj

(11)(0)} of the
initially populated (11) state using the corresponding probability
distribution F11(Γ, 0). In this case, all of the coefficients
{aj

(11)(0)} would be equal to unity, and the value ofF11 would
be reflected by the resulting density of initial conditions in phase
space. In the calculations reported here, we chose instead to
use a simple grid of initial conditions in phase space. With
this choice, the coefficients{aj

(11)(0)} for the (11) ensemble are
not all unity but are chosen to fit the initial distribution. The
(22) and (12) ensembles are also placed on identical grids, but
with zero coefficients initially. As a practical consideration,
the size and shape of the grids must be chosen to be large
enough in extent so that there is an overlap of the evolving
grids in the electronic coupling region for all ensembles
throughout the simulation. In the calculations presented here,
we generated 900 trajectories for each of the three [(11), (22),
and (12)] ensembles. The trajectories and coefficients were then
propagated as described in the previous section. We employed
a large number of trajectories in this first report to allow the
intrinsic accuracy of the method to be assessed.
In Figure 2, we show the populations of the states 1 and 2 as

a function of time for both the exact and semiclassical molecular
dynamics. In our trajectory implementation, the population of
theµth electronic state is given by

The results of our trajectory-based implementation are compared
with the corresponding numerically exact quantum mechanical
quantities. The figure shows that the state 2 population increases
rapidly aroundt ) 500 au, as the state 1 wave packet passes
through the crossing region on its way to dissociation on the
repulsive surface. Approximately 25% of the total population
is transferred to the bound diabatic state 2 during this passage.
The classical trajectory results are in nearly quantitative agree-
ment with the quantum wave packet dynamics.
A more demanding test of the accuracy of our method is an

examination of the time-dependent semiclassical phase space
probabilities and coherences themselves. In parts b of Figures
3-6, we show the evolution of reduced semiclassical config-
uration space densitiesPij

SC(q, t) ) ∫Fij(q, p, t) dp, In parts a of
Figures 3-6, the analogous quantum mechanical quantities
Pij
Q(q, t) ) ψ*i(q,t) ψj(q, t) are shown. (The real and imaginary

parts ofP12(q, t) are shown in Figures 5 and 6, respectively.)

The figures summarize the entire simulation in a space-time
(q, t) diagram, withPij(q, t) as the dependent variable.
Inspection of these figures reveals that the classical trajectory

ensembles, generalized by the evolving coefficients{aj
(µ)(t)},

TABLE 1: Numerical Values of Parameters, in atomic units

A 2.2782× 10-2 Vo 1.2× 10-3

B 2.2782× 10-2 c 4.0
R 2.0 qc 6.15315
q1 5.5 m 1× 104

D 1.8225× 10-2 ω 4× 10-3

â 1.0 qe 5.7
q2 5.8

Pµ(t) ≡ Tr Fµ(Γ, t) ) ∑
j)1

Nµ

aj
(µ)(t) (µ ) 11, 22) (53)

Figure 2. Comparison of semiclassical trajectory and exact quantum
populations of states 1 and 2 as functions of time.

Figure 3. Comparison of semiclassical generalized distribution func-
tions and exact quantum mechanical results. The figure shows 50 curves
representing the reduced configuration space probability distribution
P11(q) as a function ofq, as defined in the text. The top curve is thet
) 0 result, and each successive curve below it is displaced down by
60 au in time relative to the previous curve, yielding a total simulation
time of 3000 au. The result is a space-time (q, t) representation of the
evolution ofP11. (a, top) Exact quantum mechanical results. (b, bottom)
Semiclassical trajectory results.
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give an excellent representation of the corresponding quantum
mechanical density matrix elements at a fine level of detail.
This agreement is nearly perfect at early times. The close
agreement is obtained even for the “nonclassical” electronic
coherenceF12(Γ, t). This quantity is a complex valued,
oscillatory function of the phase space variablesΓ ) (q, p). In
the exact calculations, its structure results from the interplay of
the product of the quantum amplitudesψ1 and ψ2. In our
semiclassical trajectory formulation, this comes about instead
by a coherent superposition of the (12) ensemble trajectories,
each weighted by a complex amplitudeaj

(12)(t). This coherent
superposition ofclassical trajectories, evolving under Hamil-
tonian dynamics with the averaged HamiltonianHo, accumulat-
ing a phase that is a time integral of the difference potential
(divided by Planck’s constant) and, with additional nonclassical
coupling terms, does a remarkable job of faithfully capturing
the quantum mechanical structure of the electronic coherence
and its dependence on the nuclear phase space variables. The
level of agreement obtained here, particularly at early times, is
comparable to the agreement between numerically exact quan-
tum wavepacket dynamics and a corresponding direct numerical
grid solution of the semiclassical phase space partial differential
equations, eqs 15-17. (See ref 51 for comparison.)

Near the end of the simulation, numerical noise begin to
appear in the trajectory results. We believe that these occur
owing to instabilities in our simple numerical implementation,
and we are currently developing and testing more efficient and
stable algorithms.

V. Discussion

In this paper, we have described a trajectory-based imple-
mentation of our recently proposed semiclassical-limit approach
to molecular dynamics on coupled electronic surfaces.51 Build-
ing on the conventional method of modeling single surface
dynamical processes in the classical limit using trajectory
integration and ensemble averaging, we presented an augmented
dynamical description of multistate classical dynamics, based
on adding additional time-dependent coefficients to each
member of the coupled ensembles. Physically, these new
dynamical variables represent the evolving weights (and phases
for the electronic coherence) of the trajectories. All of the
nonclassical effects of electronic coupling and coherence are
described by the equations of motion for these coefficients, while
the phase space trajectories themselves obey conventional
Hamilton’s equations, just as in the classical single-state case.
Despite the use of classical trajectories in our numerical

implementation, we stress that our approach is explicitly a theory
of the evolution of the distribution functionsFij(Γ, t)
themselvessnot of individual, independent trajectories. This
is an important point, and at the heart of the description of
nonclassical processes. Electronic coherence in our theory is
not a property of any individual trajectory but results from the
“interference” of a whole ensemble of trajectories modeling an
evolving function. This function, in turn, both controls and is
influenced by the evolution of other functionssthe probability
distributions on the two surfacessand thus influences the
generalized dynamics of many other trajectories.

Figure 4. Same as Figure 3, forP22. Figure 5. Same as Figure 3, for ReP12.
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When used as a numerical method for solving the coupled-
state partial differential equations for theFij(Γ, t), the members
of all the ensembles become entwined in a web of mutual
interactions that is quite different from their rigorous indepen-
dence in a conventional single-surface molecular dynamics
simulation. We conjecture that many of the fundamental
problems associated with previous approaches to modeling
electronic transitions with classical trajectories, such as problems
with the treatment of electronic coherence in surface hop-
ping,31,40unphysical mixed electronic states in mean trajectory
methods,40 and nonlocal time difficulties in the path integral-
based work,44,49 are due to their focus onsingle independent
trajectories coupled to quantum degrees of freedom. In theexact
quantum mechanical description of multistate dynamics are the
evolving wave packets on each state that couple to each other.
This roughly translates in the classical limit to interactions
between the entire evolving ensembles. Quantum mechanics
is a theory of the evolution of probability distributions (derived
from underlying amplitudes), and a correct treatment of dynam-
ics at the ensemble level is built explicitly into our classical
limit approach. We will explore this fundamental issue of
classical-quantum correspondence more fully in a future pub-
lication.64

The work presented in this paper constitutes a first successful
attempt at building a classical trajectory-based implementation
of our general semiclassical approach to nonadiabatic dynamics.
We have shown that an augmentation of a standard molecular
dynamics program can be made which allows certain intrinsi-
cally quantum mechanical properties, such as electronic popula-

tion transfer and the evolution of electronic coherence, to be
modeled with excellent accuracy, at least in principle. More
work needs to be done, however, before this approach becomes
an efficient numerical method for modeling many-body systems.
Refinements currently under development include methods for
incorporating birth, death, and “retirement” of trajectories to
allow the total number ofinteractingmembers of the ensembles
to be minimized while keeping the ensembles overlapping in
phase space regions where coupling is operative; the use of more
elaborate higher-order representations of the short-time propaga-
tor, allowing larger time steps to be employed; and the
incorporation of dynamical approximations into the trajectory
equations of motion, permitting an explicit and detailed calcula-
tion of the full electronic coherence to be avoided for applica-
tions where it is not required. These will be discussed in future
publications.
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